Distributed Machine Learning: An Intro.

Chen Huang

Feature Engineering Group, Data Mining Lab, Big Data Research Center, UESTC

- Background
- Some Examples
- Model Parallelism & Data Parallelism
- Parallelization Mechanisms
 - ✓ Synchronous
 - ✓ Asynchronous
 - ✓ ...

. . .

Parallelization Frameworks

- ✓ MPI / AllReduce / MapReduce / Parameter Server
- ✓ GraphLab / Spark GraphX

Why Distributed ML?

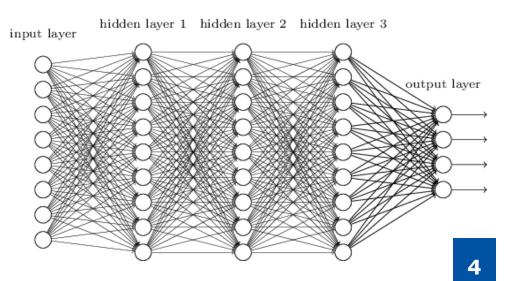
- Big Data Problem
 - ✓ Efficient Algorithm

- ✓ Online Learning / Data Stream
 - Feasible.
 - What about high dimension?
- ✓ Distributed Machine
 - The more, the merrier

Why Distributed ML?

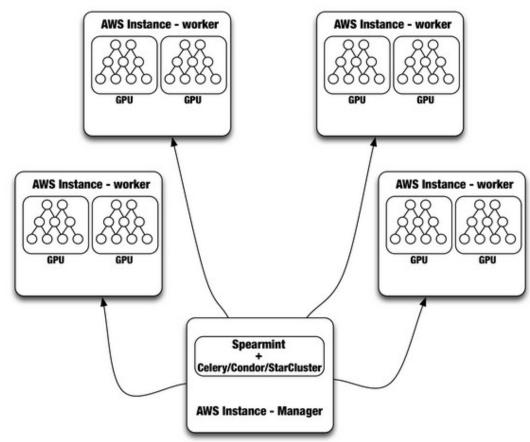
- Big Data
 - Efficient Algorithm
 - Online Learning / Data Stream
 - Distributed Machine

- Big Model
 - Model Split
 - Model Distributed



Distributed Machine Learning

• Big model over big data

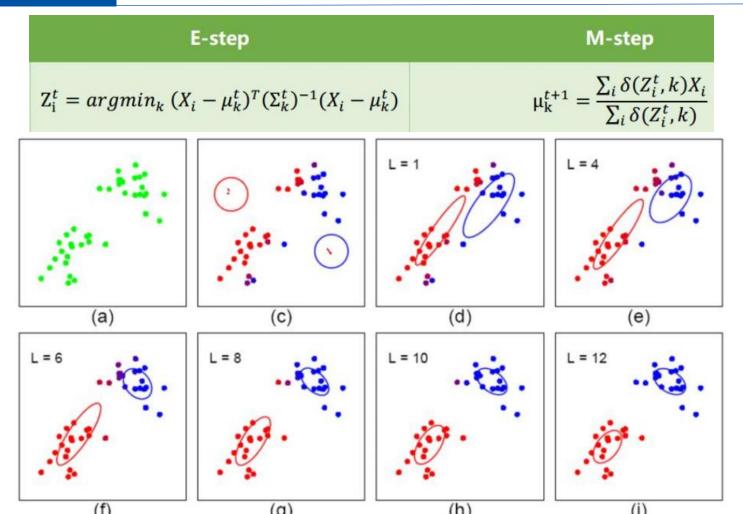


Background Overview

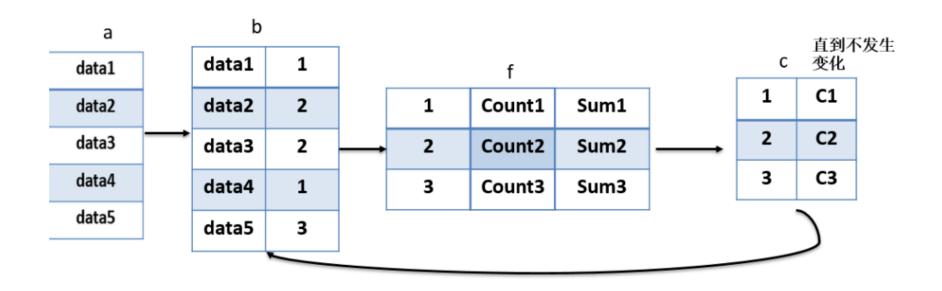
Distributed Machine Learning

- Motivation
 - Big model over big data
- DML
 - Multiple workers cooperate each other with communication
- Target
 - Get the job done (convergence, ...)
 - Min communication cost (IO, ...)
 - Max effect (Time, performance...)

K-means



Distributed K-means



Spark K-means

val data:RDD[Array[Double]] = sc.textFile("hdfs://localhost:9000/kmeansData")
 .map(x => x.split(" ").map(_.toDouble))
val centers = data.takeSample(withReplacement = false, num = numClusters)
val dim = centers(0).length

Spark K-means

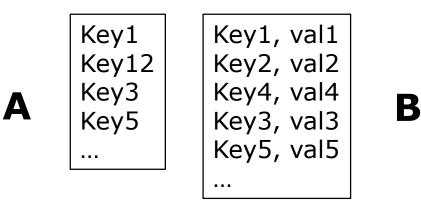
```
while(currIter <= maxIter && !ConsistentFlag){</pre>
 println("====run time " + currIter)
  val centersBro:Broadcast[Array[Array[Double]]] = sc.broadcast(centers)
  val clusters = data.map{x =>
    var index = 0
    var min = Double.MaxValue
    var minIndex = -1
    for(index <- 0 until numClusters){</pre>
      val distance = calDis(x, centersBro.value(index))
      if(min > distance){
        minIndex = index
        min = distance
    (minIndex, x)
  }
```


Spark K-means

```
//check
diff = 0.0
for(i <- 0 until numClusters){
    diff += calDis(newCenters.getOrElse(i, centersBro.value(i)), centersBro.value(i))
    }
    newCenters.keys.foreach{ index =>
    | centers(index) = newCenters(index)
    }
    if(diff <= thred){
        ConsistentFlag = true
    }
        currIter += 1
}
println("diff = " + diff +" runTime = " + currIter)
centers.foreach(x => println(x.mkString(",")))
```


Item filter

- Given two files, you need to output key-value pairs in file B, whose key exists in file A.
- File B is super large. (e.g. 100GB)

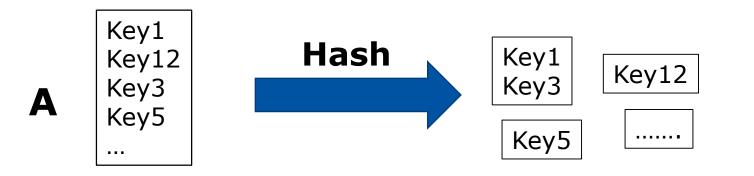


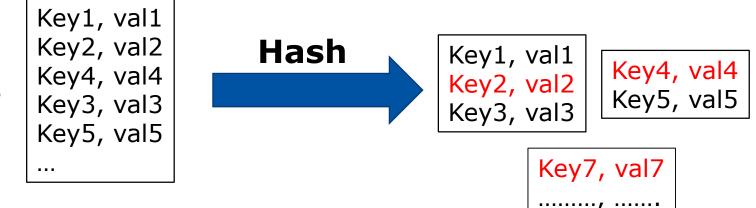
– What if A is also super large?

Item filter Key1 Key1 Key5 Key12 Key3 Key12 А Key5 Key3 . . . Key1, val1 Key3, val3 Key1, val1 Key2, val2 Key5, val5 Key4, val4 Key3, val3 Key2, val2 . . . Key5, val5 Key4, val4 ...

B

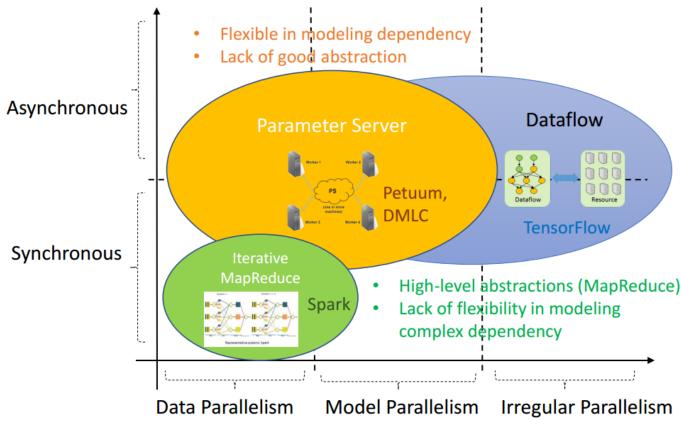
Item filter





Distributed Machine Learning

Overview



- Support hybrid parallelism and fine-grained parallelization, particularly for deep learning
- Good balance between highlevel abstraction and low-level flexibility in implementation

* AAAI 2017 Workshop on Distributed Machine Learning for more information

Distributed Machine Learning How To Distribute

Key Problems

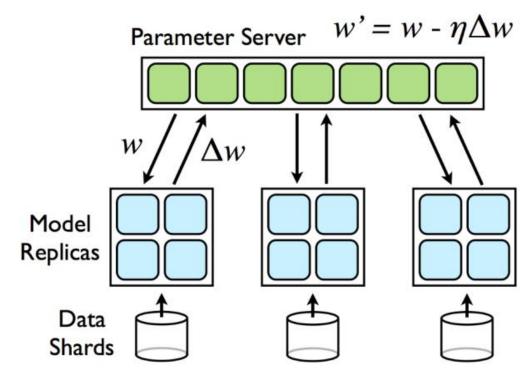
- How to "split"
 - Data parallelism / model parallelism
 - Data / Parameters dependency

- How to aggregate messages

- Parallelization mechanisms
- Consensus between local & global parameters
- Does algorithm converge
- Other concerns
 - Communication cost, ...

How To Distribute

Data Parallelism

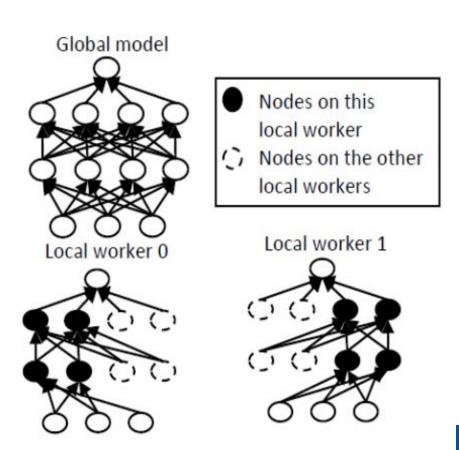


- 1. Data partition
- 2. Parallel training
- 3. Combine local updates
- 4. Refresh local model with new parameters

How To Distribute

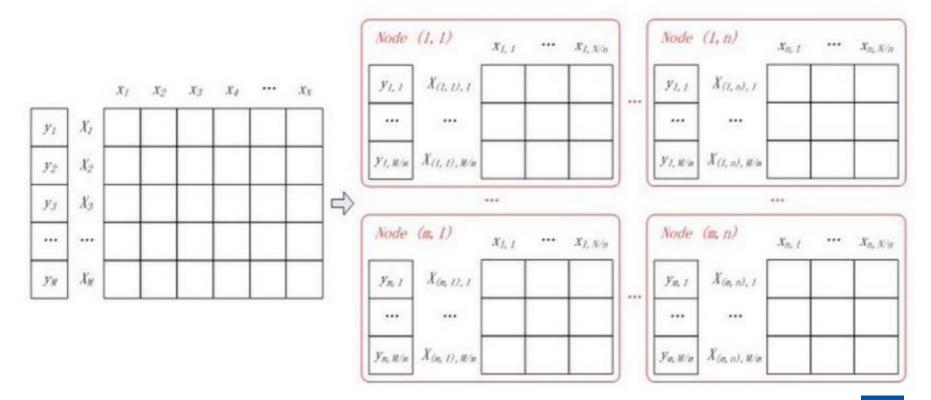
- Model Parallelism

- 1. Partition model into multiple local workers
- 2. Workers collaborate with each other to perform optimization



How To Distribute

- Model Parallelism & Data Parallelism



Example: Distributed Logistic Regression

Data Parallelism

- Split data into many samples sets
- Workers calculate the same parameter(s) on different sample set

- Model Parallelism

- Split model/parameter
- Workers calculate different parameter(s) on the same data set

- Hybrid Parallelism

Data / Parameter Split

- Data Allocation

- Random selection. (Shuffling)
- Partition. (e.g. Item filter, word count)
- Sampling
- Parallel graph calculation (for non-i.i.d. data)

Parameter Split

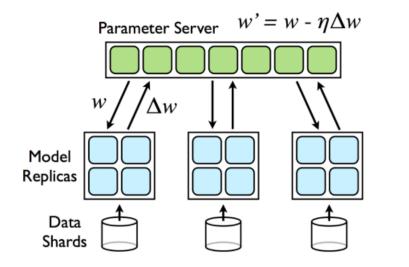
- Most algorithms assume parameter independent and randomly split parameters
- Petuum (KDD'15, Eric Xing)

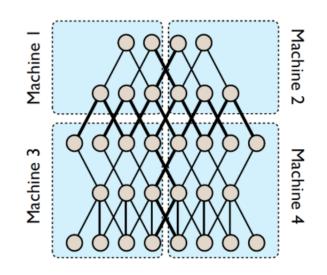
Distributed Machine Learning How To Aggregate Messages

Parallelization Mechanisms

• Given the feedback $g_i(w)$ of worker *i*, how can we update the model parameter *W*?

$$W = f(g_1(w), g_2(w), \dots, g_m(w))$$





Distributed Machine Learning Parallelization Mechanism

Bulk Synchronous Parallel (BSP)

- Synchronous update
 - Update parameter until all workers are done with their job

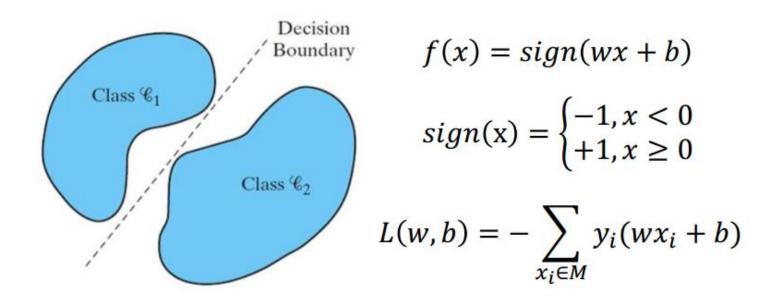
```
W = initValue;
Workers.foreach{
        worker => worker.doJob(W);
}
Update(W, workers.values());
```

- Example: Sync SGD (Mini-batch SGD), Hadoop

Distributed Machine Learning

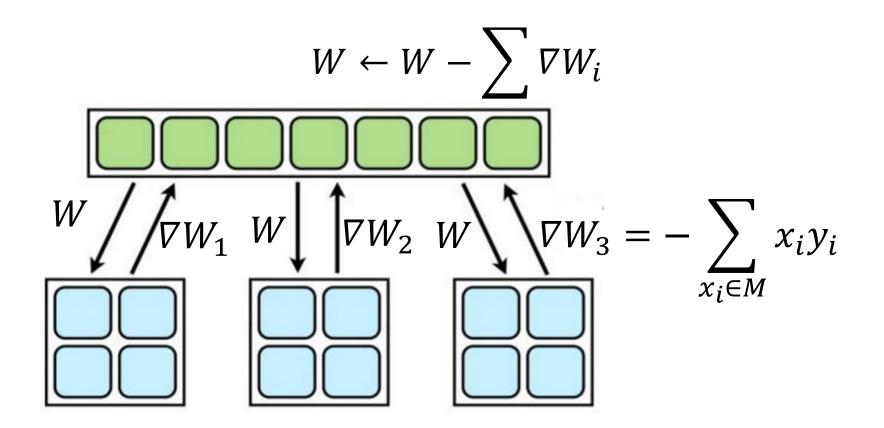
Sync SGD

- Perceptron



Distributed Machine Learning

Sync SGD



Distributed Machine Learning Parallelization Mechanism

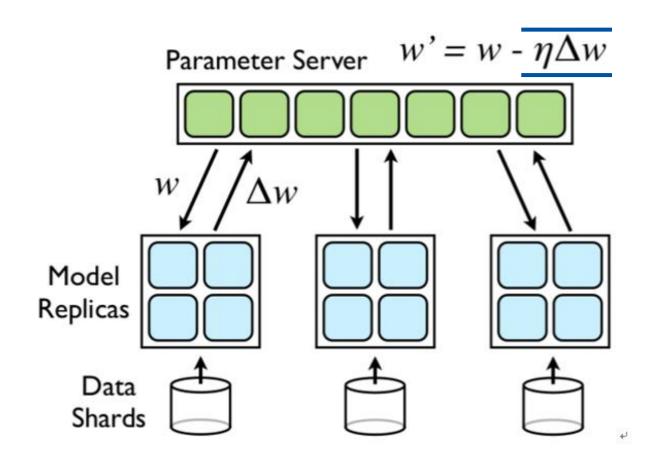
Asynchronous Parallel

- Asynchronous update
 - Update parameter whenever received the feedback of workers

- Example: *Downpour SGD (NIPS'12)*

Distributed Machine Learning

Downpour SGD



Distributed Machine Learning

Async. V.S. Sync.

- Sync.
 - <u>Single point of failure</u>: it has to wait until all workers finished his job. The overall efficiency of algorithm is determinated by the slowest worker.
 - Nice convergence

- Async.

- Very fast!
- Affect the convergence of algorithm. (e.g. expired gradient)
- Use it, if model is not sensitive to async. update

Distributed Machine Learning Parallelization Mechanism

ADMM for DML

- <u>A</u>lternating <u>D</u>irection <u>M</u>ethod of <u>M</u>ultipliers
 - Augmented Lagrangian + Dual Decomposition $\min f_1(x_1) + f_2(x_2)$ s.t. $A_1x_1 + A_2x_2 = b$

For DML case: replace x_2^{k-1} with $mean(x_2^{k-1})$ and x_1^k with

$$\begin{aligned} & \text{mean}(x_1^k) \text{ when updating} \\ & x_1^k = argmin_{x_1} f_1(x_1) + \frac{\rho}{2} \left\| A_1 x_1 + A_2 x_2^{k-1} - b + w^{k-1} \right\|_2^2 \\ & x_2^k = argmin_{x_2} f_2(x_2) + \frac{\rho}{2} \left\| A_1 x_1^k + A_2 x_2 - b + w^{k-1} \right\|_2^2 \\ & w^k = w^{k-1} + A_1 x_1^k + A_2 x_2^k - b \end{aligned}$$

- Famous optimization algorithm for both industrial and academic. (e.g. computing advertising)

Distributed Machine Learning Parallelization Mechanisms

Overview

- Sync.
- Async
- ADMM
- Model Average
- Elastic Averaging SGD (NIPS'15)
- Lock Free: Hogwild! (NIPS'11)
- _____

Distributed ML Framework

This is a joke, please laugh...

机器学习相关岗位面试中,有哪些加(zhuang)分(bi)项?

我:目前深度学习当中用mapreduce的比较少,因为我们经常要SGD,

M: 哦我猜一下, 所以你们用MPI, 然后你要优化Allreduce。

我:。。对的,然后很多时候网络会有瓶颈,

M: 恩, 因为你们不想上infiniband。

我:。。。对的,

M: 然后你们 网络的 吞吐速度是够的,但是延迟不理想。

我:。。。对的,

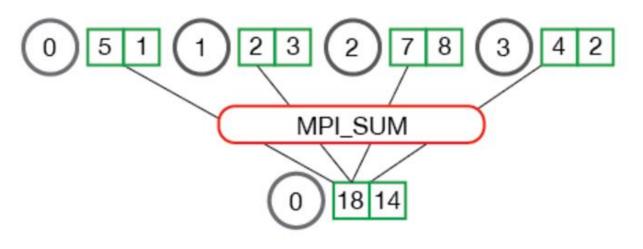
M:所以你们想要有异步通信,但是同时又要控制模型不发散。

我:。。。对的。

Message Passing Interface (MPI)

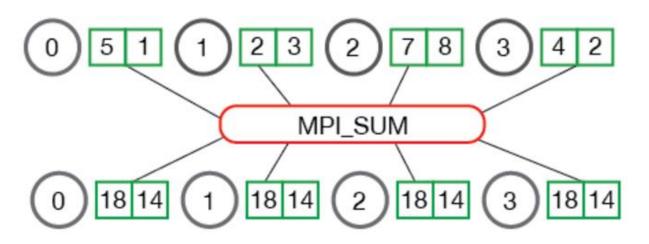
- Parallel computing architecture
- Many operations:
 - send, receive, broadcast, scatter, gather...

MPI_Reduce



Message Passing Interface (MPI)

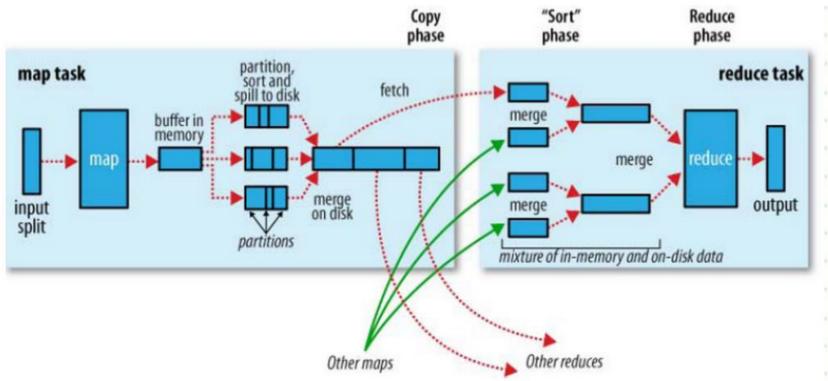
- Parallel computing architecture
- Many operations:
 - AllReduce = reduce + broadcast



- Hard to write code!

MapReduce

- Well-encapsulated code, user-friendly!
- Designed scheduler,
- Integration with HDFS / fault-tolerant /....

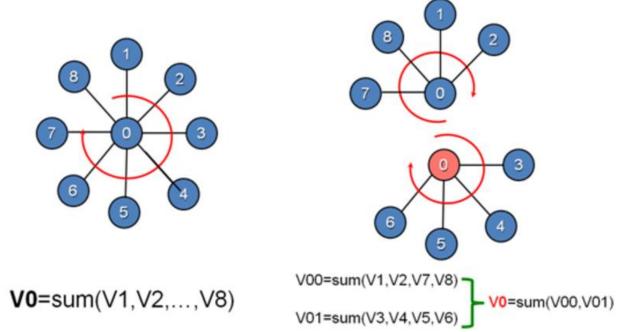


MapReduce

- Synchronous parallel, single point of failure.
- 数据溢写 (I don't know how to translate...)
- Not so suitable for machine learning task.
 - Many ML models are solved in iterative manner, and Hadoop/MapReduce does not naturally support iteration calculation
 - Spark does
- Iterative MapReduce Style Machine Learning Toolkits
 - Hadoop Mahout
 - Spark MLlib

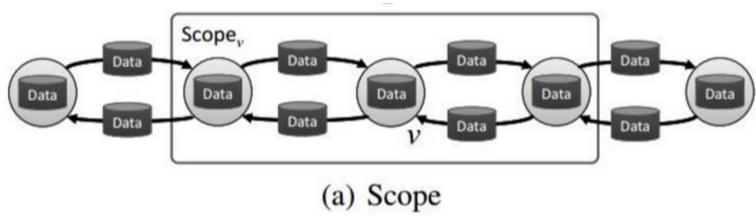
GraphLab (UAI'10, VLDB'12)

- Distributed computing framework for graph
- Split graph into sub-graphs by **<u>node cut</u>**
- Asynchronous parallel



GraphLab (UAI'10, VLDB'12)

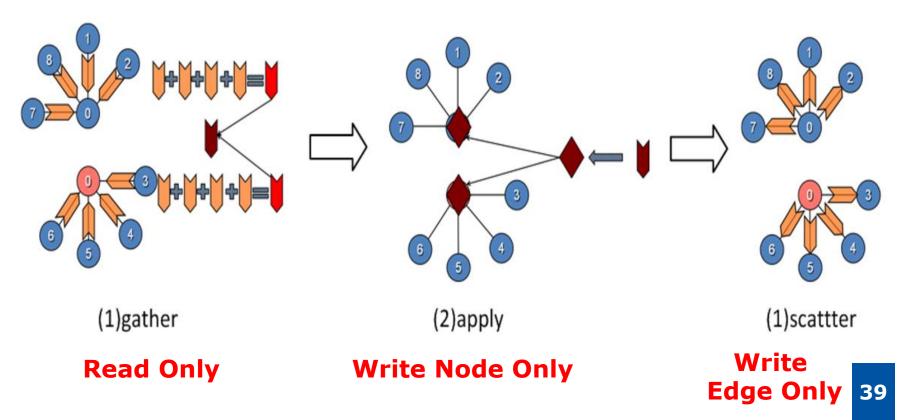
- Data Graph + Update Function + Sync Operation
- Data Graph
- Update function: user-defined function, working on scopes
- Sync : global parameter update



Scope allows overlapping

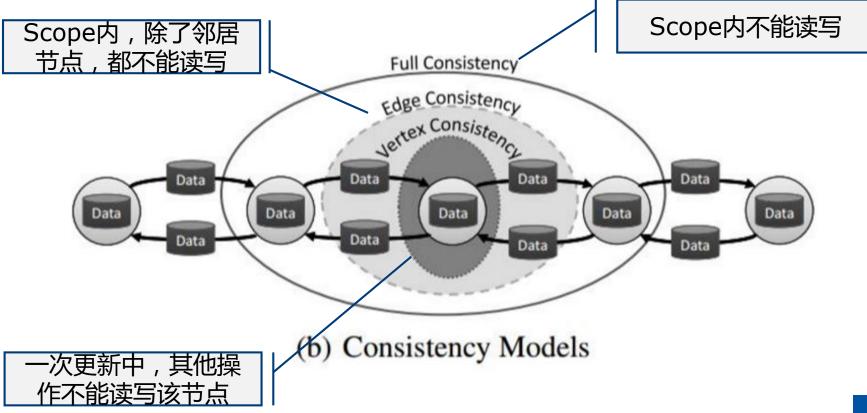
GraphLab (UAI'10, VLDB'12)

- Data Graph + Update Function + Sync Operation
- Three Steps = Gather + Apply + Scatter



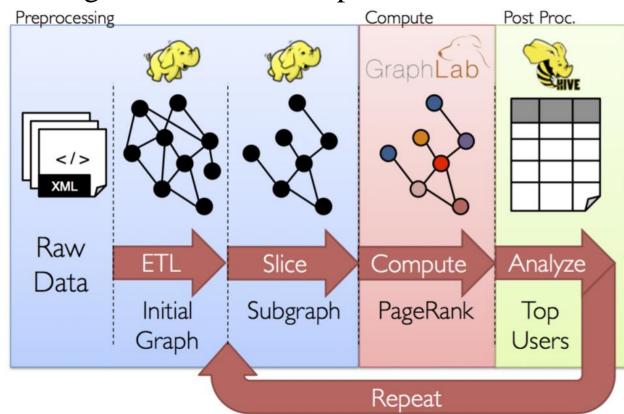
GraphLab: Consistency Control

- Trade-off between conflict and parallelization



Spark GraphX

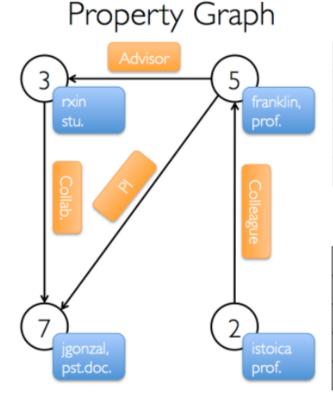
 Avoid the cost of moving sub-graphs among workers by combining Table view & Graph view



∃GraphX

Spark GraphX

 Avoid the cost of moving sub-graphs among workers by combining Table view & Graph view



ld	Property (V)		
3	(rxin, student)		
7	(jgonzal, postdoc)		
5	(franklin, professor)		
2	(istoica, professor)		

Vertex Table

Edge Table

SrcId	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

 $\exists Graph X$

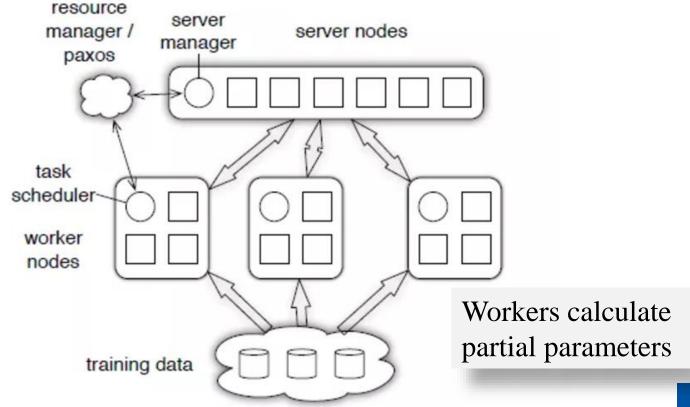
Distributed Machine Learning

Frameworks

Parameter Server

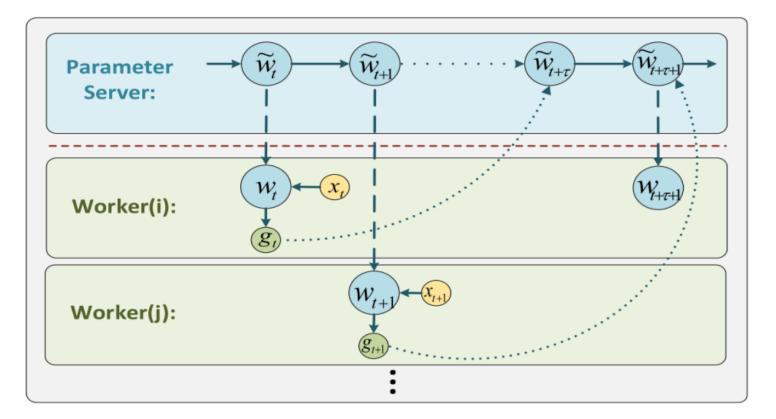
 Workers query for current parameters
 Parameters are stored in distributed way, among server nodes

- Asynchronous parallel



Parameter Server

- Asynchronous parallel



Distributed Machine Learning

DML Trends Overview

• For more information, please go to: *AAAI-17 Tutorial on Distributed Machine Learning*

Components	Basic Research	Advanced Research
Sequential algorithms	Convex	Non-convex, faster algorithm
Data Allocation	Gap between theory and practice	Theoretical analysis of practical data allocation
Synchronization	BSP, ASP, etc.	Handling communication delay
Aggregation	Model average	Other alternatives
Theory	Convergence	Generalization

Distributed Machine Learning Take Home Message

- How to "split"

- Data parallelism / model parallelism
- Data / Parameters dependency
- How to aggregate messages
 - Parallelization mechanisms
 - Consensus between local & global parameters
 - Does algorithm converge

- Frameworks

Thanks